Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

A $1: 1$ cocrystal of di- μ-chloro-bis-\{[N-(1-hydroxybut-2-yl)salicylidene-iminato- $\left.N, O, O^{\prime}\right]$ copper(II)\} monohydrate and its methanol solvate

Waldemar Maniukiewicz* and Maria BukowskaStrzyżewska

Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland
Correspondence e-mail: waldemar@ck-sg.p.lodz.pl

Received 8 November 1999
Accepted 11 February 2000
The structure consists of two crystallographically independent and differently solvated binuclear complexes, $\left\{\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2^{-}}\right.\right.$ $\left.\left.\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\right)_{2}\right] \cdot \mathrm{CH}_{4} \mathrm{O}\right\} \cdot\left\{\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}$. The water and methanol solvate molecules are similarly connected with the complex molecules by two hydrogen bonds. The asymmetrical system of hydrogen bonds breaks up the potential centrosymmetricity of both chelate molecules. All copper(II) centres are in a square-pyramidal environment, with four short bonds in the basal plane formed by two trans O atoms and one N atom of the tridentate ligand, and a bridge chloride ion. The fifth axial long bond is formed by a chloride ligand which lies in the basal plane of the neighbouring copper(II) ion.

Comment

The stereochemistry of di- μ-halide-bridged copper(II) dimers has attracted our attention in recent years (Bukowska-Strzyżewska et al., 1997). The present study on the title compound, (I), forms part of our work on the structure of dimeric copper(II) complexes with Schiff bases obtained from

(I)
aromatic aldehyde and aliphatic amino alcohols. We have previously reported several such compounds and studied their structural features (Bukowska-Strzyżewska \& Maniukiewicz, 1992; Maniukiewicz \& Bukowska-Strzyżewska, 1994, 1995, 1996). It seems interesting to compare the influence of the solvation or hydration on the shape of the dimeric molecules.

The view of the two crystallographically independent binuclear complexes (molecules A and B) with the atomlabelling scheme is shown in Fig. 1. Each copper(II) ion is fivecoordinated with approximate square-pyramidal geometry. Apart from small changes in the chemically equivalent bond lengths and angles of molecules A and B, the largest dissimilarities exist in the geometry of $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ cores. The individual $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ bridges formed by one short $\mathrm{Cu}-\mathrm{Cl}$ and one long $\mathrm{Cu}-\mathrm{Cl}$ bond have distinctly differentiated bond lengths. The short $\mathrm{Cu}-\mathrm{Cl}$ bonds vary from 2.2550 (11) to 2.2645 (11) \AA and the long $\mathrm{Cu}-\mathrm{Cl}$ bonds from 2.6662 (12) to 2.9112 (13) \AA. The $\mathrm{Cu} \cdots \mathrm{Cu}$ non-bonding distances are 3.450 (1) and 3.422 (1) \AA for $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ and $\mathrm{Cu}^{\prime} \cdots \mathrm{Cu}^{\prime}$, respectively. The central $\mathrm{CuCl}_{2} \mathrm{Cu}$ rings are not planar. The dihedral angles change from 21.9 (1) to $23.1(1)^{\circ}$ for $\mathrm{Cu}^{\prime}-$ $\mathrm{Cl}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{Cu} 2^{\prime}$ and $\mathrm{Cu} 1-\mathrm{Cl} 1-\mathrm{Cl} 2-\mathrm{Cu} 2$, respectively.

(a)

(b)

Figure 1
A view of (a) the hydrated A molecule and (b) the B molecule solvated by $\mathrm{CH}_{3} \mathrm{OH}$, with the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.

The asymmetrical system of hydrogen bonds of molecules A and B is shown in Fig. 1. It spoils the potential centrosymmetricity of the binuclear molecules and induces the deformation of the core $\mathrm{CuCl}_{2} \mathrm{Cu}$ rings and the $\mathrm{Cu}^{\mathrm{II}}$ polyhedra. As can be seen from Table 2, all three hydrogen bonds formed by methanol-solvated complex B are distinctly shorter than the bonds formed by molecule A. The observed deformation of the $\mathrm{Cu}^{\mathrm{II}}$ coordination polyhedra from idealized square-pyramidal geometry toward trigonal bipyramidal is also, on average, greater in molecule B than in A. The deformation parameters τ, computed on the basis of the two maximal valency angles of the Cu atom as $\left(\alpha_{1}-\alpha_{2}\right) / 60$ (Addison et al., 1985), are 21.9 and 12.6% for the $\mathrm{Cu}^{\text {II }}$ centres in A, and 20.9 and 17.3% for those in B.

Experimental

The title compound was prepared by a modification of a previously described procedure (Samus et al., 1987). The complex was prepared by the addition of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.001 \mathrm{~mol})$ to a warm solution containing the ligand $(0.001 \mathrm{~mol})$ in methanol $(50 \mathrm{ml})$. The resulting solution was filtered and allowed to cool. Slow evaporation deposited dark-green crystals which were analysed as $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14}-\right.\right.$ $\left.\left.\mathrm{NO}_{2}\right)_{2}\right]_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{OH}$. Analysis found: C 43.55 , N 4.56, H 5.46%; calculated: C 43.64, N 4.43, H 5.37\%.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]_{2} \cdot-$	$D_{x}=1.535 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$	D_{m} measured by flotation in
$M_{r}=1214.94$	$\mathrm{CH}_{3} \mathrm{I} / \mathrm{CCl}_{4}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=12.8770(10) \AA$	Cell parameters from 15
$b=15.079(2) \AA$	reflections
$c=16.212(3) \AA$	$\theta=10-20^{\circ}$
$\alpha=65.10(2)^{\circ}$	$\mu=1.856 \mathrm{~mm}^{-1}$
$\beta=71.71(2)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=69.93(2)^{\circ}$	Prism, dark green
$V=2628.4(6) \AA^{\circ}$	$0.40 \times 0.35 \times 0.30 \mathrm{~mm}$
$Z=2$	

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cu1-O1	1.907 (3)	$\mathrm{Cu} 1^{\prime}-\mathrm{Ol}^{\prime}$	1.894 (3)
$\mathrm{Cu} 1-\mathrm{N} 1$	1.937 (3)	$\mathrm{Cu} 1^{\prime}-\mathrm{N} 1^{\prime}$	1.943 (3)
$\mathrm{Cu} 1-\mathrm{O} 2$	2.043 (3)	$\mathrm{Cu} 1^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	2.015 (3)
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.2646 (11)	$\mathrm{Cu}^{\prime}-\mathrm{Cl1}^{\prime}$	2.2615 (11)
$\mathrm{Cu} 1-\mathrm{Cl} 2$	2.6662 (12)	$\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	2.7862 (12)
$\mathrm{Cu} 2-\mathrm{O} 3$	1.912 (3)	$\mathrm{Cu} 2^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	1.910 (3)
$\mathrm{Cu} 2-\mathrm{N} 2$	1.945 (3)	$\mathrm{Cu} 2^{\prime}-\mathrm{N} 2^{\prime}$	1.943 (3)
$\mathrm{Cu} 2-\mathrm{O} 4$	1.996 (3)	$\mathrm{Cu} 2^{\prime}-\mathrm{O}^{\prime}$	1.999 (3)
$\mathrm{Cu} 2-\mathrm{Cl} 2$	2.2550 (11)	$\mathrm{Cu} 2^{\prime}-\mathrm{Cl}_{2}{ }^{\prime}$	2.2560 (12)
$\mathrm{Cu} 2-\mathrm{Cl} 1$	2.9112 (13)	$\mathrm{Cu} 2^{\prime}-\mathrm{Cl1}^{\prime}$	2.7752 (12)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	175.87 (10)	$\mathrm{O} 1^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{O} 2^{\prime}$	175.30 (10)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	95.08 (8)	$\mathrm{O1}^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{Cl1}^{\prime}$	93.85 (8)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	162.71 (10)	$\mathrm{N} 1^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	162.78 (10)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	88.86 (7)	$\mathrm{O} 2^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	90.79 (8)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	99.08 (9)	$\mathrm{N} 1^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	101.89 (9)
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	95.33 (4)	$\mathrm{Cl1}^{\prime}-\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	93.01 (4)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	174.57 (11)	$\mathrm{O} 3^{\prime}-\mathrm{Cu} 2^{\prime}-\mathrm{O}^{\prime}$	175.97 (10)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 2$	92.76 (8)	$\mathrm{O}^{\prime}-\mathrm{Cu}_{2}{ }^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	92.03 (8)
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cl} 2$	167.03 (11)	$\mathrm{N} 2^{\prime}-\mathrm{Cu} 2^{\prime}-\mathrm{Cl} 2^{\prime}$	165.58 (9)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{Cl} 1$	89.95 (9)	$\mathrm{O}^{\prime}-\mathrm{Cu} 2^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	90.68 (8)
$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cl} 1$	102.41 (10)	$\mathrm{N} 2^{\prime}-\mathrm{Cu} 2^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	99.70 (9)
$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{Cl} 1$	89.12 (4)	$\mathrm{Cl} 2^{\prime}-\mathrm{Cu} 2^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	93.42 (4)
$\mathrm{Cu} 1-\mathrm{Cl} 1-\mathrm{Cu} 2$	82.60 (4)	$\mathrm{Cu} 1^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}-\mathrm{Cu} 2^{\prime}$	84.95 (4)
$\mathrm{Cu} 2-\mathrm{Cl} 2-\mathrm{Cu} 1$	88.62 (4)	$\mathrm{Cu} 2^{\prime}-\mathrm{Cl}_{2}{ }^{\prime}-\mathrm{Cu}^{\prime}$	84.79 (4)

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.85	1.83	$2.664(4)$	165
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\prime}$	1.00	1.69	$2.629(4)$	156
$\mathrm{O}^{\prime}-\mathrm{H} 2 \cdots \mathrm{O}^{\prime}$	0.85	1.82	$2.662(5)$	171
$\mathrm{O}^{\prime}-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 5^{\prime}$	0.98	1.64	$2.611(4)$	170
O5-H1 $W \cdots \mathrm{O} 1^{\text {O }^{\prime}-\mathrm{H} 5 M \cdots \mathrm{O} 1^{\prime}}$	0.98	1.83	$2.793(5)$	165

Data collection

Siemens $P 3$ diffractometer	$R_{\text {int }}=0.018$
$\omega-2 \theta$ scans	$\theta_{\max }=25.07^{\circ}$
Absorption correction: ψ scan	$h=0 \rightarrow 15$
\quad (North et al., 1968$)$	$k=-16 \rightarrow 17$
$\quad T_{\min }=0.495, T_{\max }=0.573$	$l=-18 \rightarrow 19$
9070 measured reflections	2 standard reflections
8666 independent reflections	every 100 reflections
7583 reflections with $I>2 \sigma(I)$	intensity decay: none
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0604 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$+2.9616 P]$
$w R\left(F^{2}\right)=0.119$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.095$	$(\Delta / \sigma)_{\max }=0.022$
8666 reflections	$\Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3}$
604 parameters	$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$
H atoms: see below	

H atoms: see below

H atoms attached to O atoms were located directly from the difference map. The remaining H atoms were placed at their calculated positions and refined using a riding model.

Data collection: P3 Software (Siemens, 1990); cell refinement: P3 Software; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Polish State Committee for Scientific Research (KBN) (grant 3 T09A 142 15).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1033). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rea, T. G., Reedijk, J., Rijn, J. \& Verschoor, G. C. (1985). J. Chem. Soc. Dalton Trans. pp. 1349-1353.
Bukowska-Strzyżewska, M. \& Maniukiewicz, W. (1992). J. Crystallogr. Spectrosc. Res. 22, 43-49.
Bukowska-Strzyżewska, M., Maniukiewicz, W. \& Sieroń, L. (1997). Acta Cryst. B53, 466-475.
Maniukiewicz, W. \& Bukowska-Strzyżewska, M. (1994). J. Chem. Crystallogr. 24, 133-137.
Maniukiewicz, W. \& Bukowska-Strzyżewska, M. (1995). J. Chem. Crystallogr. 25, 505-509.
Maniukiewicz, W. \& Bukowska-Strzyżewska, M. (1996). J. Chem. Crystallogr. 26, 43-46.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Samus, N. M., Sljachov, E. N., Kulemu, S., Burdenko, T. A., Czajka, T. S., Cankov, W. J. \& Popov, M. S. (1987). Chim. Farm. Zh. pp. 446-449.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1990). P3 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

